Extensions 1→N→G→Q→1 with N=C4 and Q=C22xD13

Direct product G=NxQ with N=C4 and Q=C22xD13
dρLabelID
C22xC4xD13208C2^2xC4xD13416,213

Semidirect products G=N:Q with N=C4 and Q=C22xD13
extensionφ:Q→Aut NdρLabelID
C4:1(C22xD13) = C2xD4xD13φ: C22xD13/D26C2 ⊆ Aut C4104C4:1(C2^2xD13)416,216
C4:2(C22xD13) = C22xD52φ: C22xD13/C2xC26C2 ⊆ Aut C4208C4:2(C2^2xD13)416,214

Non-split extensions G=N.Q with N=C4 and Q=C22xD13
extensionφ:Q→Aut NdρLabelID
C4.1(C22xD13) = D8xD13φ: C22xD13/D26C2 ⊆ Aut C41044+C4.1(C2^2xD13)416,131
C4.2(C22xD13) = D8:D13φ: C22xD13/D26C2 ⊆ Aut C41044C4.2(C2^2xD13)416,132
C4.3(C22xD13) = D8:3D13φ: C22xD13/D26C2 ⊆ Aut C42084-C4.3(C2^2xD13)416,133
C4.4(C22xD13) = SD16xD13φ: C22xD13/D26C2 ⊆ Aut C41044C4.4(C2^2xD13)416,134
C4.5(C22xD13) = Q8:D26φ: C22xD13/D26C2 ⊆ Aut C41044+C4.5(C2^2xD13)416,135
C4.6(C22xD13) = D4.D26φ: C22xD13/D26C2 ⊆ Aut C42084-C4.6(C2^2xD13)416,136
C4.7(C22xD13) = D26.6D4φ: C22xD13/D26C2 ⊆ Aut C42084C4.7(C2^2xD13)416,137
C4.8(C22xD13) = Q16xD13φ: C22xD13/D26C2 ⊆ Aut C42084-C4.8(C2^2xD13)416,138
C4.9(C22xD13) = Q16:D13φ: C22xD13/D26C2 ⊆ Aut C42084C4.9(C2^2xD13)416,139
C4.10(C22xD13) = D104:C2φ: C22xD13/D26C2 ⊆ Aut C42084+C4.10(C2^2xD13)416,140
C4.11(C22xD13) = C2xD4:D13φ: C22xD13/D26C2 ⊆ Aut C4208C4.11(C2^2xD13)416,152
C4.12(C22xD13) = D52:6C22φ: C22xD13/D26C2 ⊆ Aut C41044C4.12(C2^2xD13)416,153
C4.13(C22xD13) = C2xD4.D13φ: C22xD13/D26C2 ⊆ Aut C4208C4.13(C2^2xD13)416,154
C4.14(C22xD13) = C2xQ8:D13φ: C22xD13/D26C2 ⊆ Aut C4208C4.14(C2^2xD13)416,162
C4.15(C22xD13) = Q8.D26φ: C22xD13/D26C2 ⊆ Aut C42084C4.15(C2^2xD13)416,163
C4.16(C22xD13) = C2xC13:Q16φ: C22xD13/D26C2 ⊆ Aut C4416C4.16(C2^2xD13)416,164
C4.17(C22xD13) = D4:D26φ: C22xD13/D26C2 ⊆ Aut C41044+C4.17(C2^2xD13)416,170
C4.18(C22xD13) = C52.C23φ: C22xD13/D26C2 ⊆ Aut C42084C4.18(C2^2xD13)416,171
C4.19(C22xD13) = D4.9D26φ: C22xD13/D26C2 ⊆ Aut C42084-C4.19(C2^2xD13)416,172
C4.20(C22xD13) = C2xD4:2D13φ: C22xD13/D26C2 ⊆ Aut C4208C4.20(C2^2xD13)416,217
C4.21(C22xD13) = D4:6D26φ: C22xD13/D26C2 ⊆ Aut C41044C4.21(C2^2xD13)416,218
C4.22(C22xD13) = C2xQ8xD13φ: C22xD13/D26C2 ⊆ Aut C4208C4.22(C2^2xD13)416,219
C4.23(C22xD13) = C2xD52:C2φ: C22xD13/D26C2 ⊆ Aut C4208C4.23(C2^2xD13)416,220
C4.24(C22xD13) = Q8.10D26φ: C22xD13/D26C2 ⊆ Aut C42084C4.24(C2^2xD13)416,221
C4.25(C22xD13) = C4oD4xD13φ: C22xD13/D26C2 ⊆ Aut C41044C4.25(C2^2xD13)416,222
C4.26(C22xD13) = C2xC104:C2φ: C22xD13/C2xC26C2 ⊆ Aut C4208C4.26(C2^2xD13)416,123
C4.27(C22xD13) = C2xD104φ: C22xD13/C2xC26C2 ⊆ Aut C4208C4.27(C2^2xD13)416,124
C4.28(C22xD13) = D104:7C2φ: C22xD13/C2xC26C2 ⊆ Aut C42082C4.28(C2^2xD13)416,125
C4.29(C22xD13) = C2xDic52φ: C22xD13/C2xC26C2 ⊆ Aut C4416C4.29(C2^2xD13)416,126
C4.30(C22xD13) = C8:D26φ: C22xD13/C2xC26C2 ⊆ Aut C41044+C4.30(C2^2xD13)416,129
C4.31(C22xD13) = C8.D26φ: C22xD13/C2xC26C2 ⊆ Aut C42084-C4.31(C2^2xD13)416,130
C4.32(C22xD13) = C22xDic26φ: C22xD13/C2xC26C2 ⊆ Aut C4416C4.32(C2^2xD13)416,212
C4.33(C22xD13) = D4:8D26φ: C22xD13/C2xC26C2 ⊆ Aut C41044+C4.33(C2^2xD13)416,223
C4.34(C22xD13) = D4.10D26φ: C22xD13/C2xC26C2 ⊆ Aut C42084-C4.34(C2^2xD13)416,224
C4.35(C22xD13) = C2xC8xD13central extension (φ=1)208C4.35(C2^2xD13)416,120
C4.36(C22xD13) = C2xC8:D13central extension (φ=1)208C4.36(C2^2xD13)416,121
C4.37(C22xD13) = D52.3C4central extension (φ=1)2082C4.37(C2^2xD13)416,122
C4.38(C22xD13) = M4(2)xD13central extension (φ=1)1044C4.38(C2^2xD13)416,127
C4.39(C22xD13) = D52.2C4central extension (φ=1)2084C4.39(C2^2xD13)416,128
C4.40(C22xD13) = C22xC13:2C8central extension (φ=1)416C4.40(C2^2xD13)416,141
C4.41(C22xD13) = C2xC52.4C4central extension (φ=1)208C4.41(C2^2xD13)416,142
C4.42(C22xD13) = D4.Dic13central extension (φ=1)2084C4.42(C2^2xD13)416,169
C4.43(C22xD13) = C2xD52:5C2central extension (φ=1)208C4.43(C2^2xD13)416,215

׿
x
:
Z
F
o
wr
Q
<